

DISCOVERing Online Data and Services

Sara J. Graves, Helen Conover, Ken Keiser

Information Technology and Systems Center
University of Alabama in Huntsville
Information Technology Research Center
National Space Science and Technology Center
[Sgraves | hconover | kkeiser] @itsc.uah.edu
256-824-6868

http://www.itsc.uah.edu

Distributed Information Services: Climate/Ocean Products for Earth Research (DISCOVER)

- A REASON collaboration between Remote Sensing Systems, NASA and the University of Alabama in Huntsville
 - > 5 year project starting April 2004
- Science goals
 - Multi satellite inter-calibration and cross-validation
 - Highly accurate, long term ocean and climate products
- IT goals
 - On-line services for data access and visualization
 - Interoperability technologies for improved data usability
 - > Flexible architecture to adapt to changing user requirements

Key Personnel

- Project Coordinator
 - Michael Goodman Co-I, NASA/MSFC
- Atmospheric Science
 - > Frank Wentz PI, RSS
 - Roy Spencer Co-I, UAH
- Information Technology
 - Sara Graves Co-I, UAH
 - Helen Conover technical lead
 - Ken Keiser data pool development

Long Term Systematic Measurements

Merging multiple sensors from multiple platforms into geophysical data sets consistent in both space and time to produce highly accurate, long-term ocean and climate products

> 27 microwave satellite instruments from the past, present, and future

Periods of operation for microwave instruments that can retrieve <u>ocean surface winds</u>

DISCOVER Data Products NASA

Combined Product

Data products include:

- Brightness temperatures
- Sea surface temperature
- Wind speed
- Air temperature
- Atmospheric water vapor
- Cloud liquid water
- Rain rate

Combined Sea Surface Temperature product merging data from TMI and AMSR-E available now

DISCOVER Information Products: Mining to Detect Tropical Cyclones

Mining Plan:

- Water cover mask to eliminate land
- Laplacian filter to compute temperature **aradients**
- Science Algorithm to estimate wind speed
- Contiguous regions with wind speeds above a desired threshold identified
- Additional test to eliminate false positives
- Maximum wind speed and location produced

Further Analysis

Data Archive

Calibration/

Limb Correction/

Converted to Tb

ADaM Mining Environment

Result

NASA/GHCC NOAA-16 AMSU-A Tb (ch. 1) 2004-Jun-16 17:28 UTC DIANMU Date (Day of Year) Sat (UTC) Lat

Results are placed on the web, made available to National Hurricane Center & Joint Typhoon Warning Center, and stored for further analysis

IT for DISCOVER

❖ IT goals

- On-line services for data access and visualization
- Interoperability technologies for improved usability
- Flexible architecture to adapt to changing user requirements

IT Approach

- > Exploring new technologies
- > Integrating them into DISCOVER information system
- ➤ Hardening selected tools and making them available to the wider community

- On-line data access with integrated data services
- Automated ordering, visualization, packaging and delivery of scientific data
- Multiple distributed repositories at UAH and RSS
- Common user interface, data catalog and order tracking

DATA POOL ®

- Data Pool Navigation Options:
 - Search via keyword and geotemporal location
 - Browse via calendar
 - Browse data directories
 - Search Unidata THREDDS catalog
- Data Access Services:
 - > FTP and HTTP
 - > OPeNDAP
 - OGC WMS and WCS

- Data Packaging Services:
 - Subsetting
 - > Re-formatting
 - Bundling

Calendar Interface

DISCOVER Data Pool Foundation Technology: ESML

DISCOVER is data format neutral

- Products generated in space-efficient binary format
- Earth Science Markup Language (ESML) is used to provide full descriptions of data syntax
- Translators can be provided to convert data to other popular formats as needed
- ESML is the basis for dataset independent services implemented and planned for DISCOVER

>Emphasis on Interoperability: Accessing and Using Heterogeneous Data

- One approach: Standard data format
 - Difficult to implement and enforce
 - Can't anticipate all needs
 - Some data can't be modeled or is lost in translation.
 - Costly to convert legacy data
- **❖** A better approach: Interchange Technologies
 - ➤ Earth Science Markup Language

What is ESML?

- It is a specialized markup language for Earth Science metadata based on XML - NOT another data format.
- It is a machine-readable and -interpretable representation of the structure, semantics and content of any data file, regardless of data format
- ESML description files contain external metadata that can be generated by either data producer or data consumer (at collection, data set, and/or granule level)
- ESML provides the benefits of a standard, self-describing data format (like HDF, HDF-EOS, netCDF, geoTIFF, ...) without the cost of data conversion
- ESML is the basis for core Interchange Technology that allows data/application interoperability
- ESML complements and extends data catalogs such as EDG and GCMD by providing the use/access information those directories lack.

Current Status

ESML data formats

- Currently supported
 - ASCII, Binary, HDF-EOS, netCDF, NEXRAD Level II, Grib, HDF5
- In work
 - GeoTIFF

ESML Editor and Data Browser applications

ESML Library

- Currently available
 - > C++ for Windows and Linux, Python bindings, IDL plugin
- Being tested
 - OPeNDAP/DODS Server
- In work
 - Subsetting Library
 - > Expanded semantic support

http://esml.itsc.uah.edu

ESML-OPeNDAP Data Server

- OPeNDAP data transport
 - Servers for each data type
 - Clients for each application
- ESML adds layer of abstraction to data server
 - ➤ Single ESML-OPeNDAP server for multiple data types
 - Simplifies set-up and maintenance for data provider
 - New OPeNDAP server not required if ESML already supports a data type that OPeNDAP doesn't - e.g., GeoTIFF
- Leveraging two maturing, NASA-funded technologies to provide added interoperability

OPeNDAP Architecture

ESML-OPENDAP Server NASA

OPeNDAP Client App

OPeNDAP Client Lib

ESML

Descs

ESML- OPeNDAP status and availability

- Currently beta testing with DODS / OPeNDAP developers and others
- ITSC test installation is providing
 - > TMI Ocean products(in HDF-EOS format)
 - Nexrad Level II radar volume scans
 - ➤ SAGE (binary)

http://moby.itsc.uah.edu/cgi-bin/
msud/esml/nph-dods/msud

Beta test package

http://www.itsc.uah.edu/~keiser/DODS-ESML

OGC Web Services

- Using OpenGIS Consortium standard Web Services protocols to access data
 - Web Map Services to visually overlay data layers to create merged images
 - DISCOVER data products, mined events (e.g., cyclones), geographic boundaries, data from other sources
 - ➤ Web Coverage Services to transmit science data, possibly using ESML to describe data structures
 - UAH is participating in continued refinement of the WCS specification

OGC Web Services

Data Pool - Architecture (1) NASA

HTTP/FTP

Staging

Data

File Servers

Data Pool - Architecture (2) NASA

Data Pool - Architecture (3) NASA

HTTP/FTP

Staging

Data

File Servers

Data Pool - Architecture (4) NASA

Data pool status and plans

- Initial version of DISCOVER Data Pool in beta test; expect to release this summer
 - Multiple search, browse and data access navigation paths
 - Initial subsetting and data packaging services
 - Integrated order tracking
 - OPeNDAP / DODS access
 - UAH-hosted datasets
- In work
 - Catalog and provide services for RSS-hosted data
 - Incorporate additional subsetting tools
 - Integrate WMS / WCS services
- Next steps
 - Additional ESML-based services
 - Updates and enhancements based on user requirements

